Influence of Specific Contributing Area algorithms on slope failure prediction in landslide modeling
نویسنده
چکیده
This study anatomized algorithm effects of specific contributing area (SCA) on soil wetness estimation, consequently landslide prediction, in SHALSTAB. A subtropical mountainous catchment during three typhoon invasions is targeted. The peak 2-day rainfall intensity of the three typhoons: Haitang, Mindulle and Herb are 144, 248 and 327 mm/day, respectively. We use modified success rate (MSR) to retrieve the most satisfying mean condition for model parameters in SHALSTAB at three rainfall intensities and respective pre-typhoon NDVI themes. Simulation indicates that algorithm affects the prediction of landslide susceptibility (i.e. FS, Factor of Safety) significantly. Based on fixed NDVI and the mean condition, we simulate by using full scale rainfall intensity from 0 to 1200 mm/day. Simulations show that predicted unstable area coverage increases non-linearly as rainfall intensity increases for all algorithms yet with different increasing trends. Compared to Dinf, D8 always gives lower coverage of predicted unstable area during three typhoons. By contrast, FD8 gives higher coverage areas. The absolute difference (compared to Dinf) in predicted unstable area ranges from ∼−3% to +4% (percent watershed area). The relative difference (compared to Dinf) ranges from −15% to as high as +40%. The maximum absolute and relative differences in unstable area prediction occur around the condition of 100–300 mm/day, which is common in subtropical mountainous region. Theoretical relationship among slope, rainfall intensity, SCA and FS value was derived in which FS values are very sensitive to algorithms in the field of slope from 37 to 52degree. Results imply any comparison among SCA-related landslide models or engineering application of rainfall return period analysis must base on the same algorithm to obtain comparable results. This study clarifies the SCA algorithm effect on FS prediction and deepens our understanding on landslide modeling. Correspondence to: S.-J. Kao ([email protected])
منابع مشابه
Regional simulation and landslide risk prediction based on bivariate logistic regression (A case study: Pahne Kola watershed in north of Iran)
This study aims to assess landslide susceptibility in Pahne Kola watershed located in the south of Sari, based on bivariate logistic regression. For this purpose, the distribution map of the area’s landslides was firstly prepared in ArcGIS software. Eight effective factors on landslide event including elevation, slope, slope aspect, rainfall, land use, distance from the road, soil and geology w...
متن کاملComparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed
1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...
متن کاملInfluence of modeling material on undercut slope failure mechanism
A series of physical modeling tests were conducted by means of a beam type geotechnical centrifuge machine in order to investigate the drainage impact on the slope failure mechanism under centrifugal acceleration. Meanwhile, the phenomenon of stress redistribution in undercut slopes and the formation of arching effect were studied. For this purpose, a poorly graded sandy soil (Silica sand No. 6...
متن کاملPredicting the susceptibility of landslide occurrence in order to manage landslide risk in Bar Neyshabur watershed
Background and objective: Landslide susceptibility zoning using different methods is one of the landslide management strategies. The purpose of this study is to evaluate the landslides susceptibility in the Bar watershed in Khorasan Razavi province using the support vector machine (SVM) algorithm. Method: First, the landslide layer of the area was corrected through field visits and Google Earth...
متن کاملApplication of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility
Background: In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Results: Following the DEM construction in a loess area susceptible to landslides, the...
متن کامل